460 research outputs found

    Anomaly-Mediated Supersymmetry Breaking with Axion

    Get PDF
    We construct hadronic axion models in the framework of the anomaly-mediated supersymmetry breaking scenario. If the Peccei-Quinn symmetry breaking is related to the supersymmetry breaking, mass spectrum of the minimal anomaly-mediated scenario is modified, which may solve the negative slepton mass problem in the minimal anomaly-mediated model. We find several classes of phenomenologically viable models of axion within the framework of the anomaly mediation and, in particular, we point out a new mechanism of stabilizing the axion potential. In this class of models, the Peccei-Quinn scale is related to the messenger scale. We also study phenomenological aspects of this class of models. We will see that, in some case, the lightest particle among the superpartners of the standard-model particles is stau while the lightest superparticle becomes the axino, the superpartner of the axion. With such a unique mass spectrum, conventional studies of the collider physics and cosmology for supersymmetric models should be altered.Comment: 20 pages, 5 figures, added footnotes and references for section

    EVM and Achievable Data Rate Analysis of Clipped OFDM Signals in Visible Light Communication

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) has been considered for visible light communication (VLC) thanks to its ability to boost data rates as well as its robustness against frequency-selective fading channels. A major disadvantage of OFDM is the large dynamic range of its time-domain waveforms, making OFDM vulnerable to nonlinearity of light emitting diodes (LEDs). DC biased optical OFDM (DCO-OFDM) and asymmetrically clipped optical OFDM (ACO-OFDM) are two popular OFDM techniques developed for the VLC. In this paper, we will analyze the performance of the DCO-OFDM and ACO-OFDM signals in terms of error vector magnitude (EVM), signal-to-distortion ratio (SDR), and achievable data rates under both average optical power and dynamic optical power constraints. EVM is a commonly used metric to characterize distortions. We will describe an approach to numerically calculate the EVM for DCO-OFDM and ACO-OFDM. We will derive the optimum biasing ratio in the sense of minimizing EVM for DCO-OFDM. Additionally, we will formulate the EVM minimization problem as a convex linear optimization problem and obtain an EVM lower bound against which to compare the DCO-OFDM and ACO-OFDM techniques. We will prove that the ACO-OFDM can achieve the lower bound. Average optical power and dynamic optical power are two main constraints in VLC. We will derive the achievable data rates under these two constraints for both additive white Gaussian noise (AWGN) channel and frequency-selective channel. We will compare the performance of DCO-OFDM and ACO-OFDM under different power constraint scenarios

    How Finely Tuned is Supersymmetric Dark Matter?

    Get PDF
    We introduce a quantification of the question in the title: the logarithmic sensitivity of the relic neutralino density Omega-hsquared to variations in input parameters such as the supersymmetric mass scales m_0, m_1/2 and A_0, tan beta and the top and bottom quark masses. In generic domains of the CMSSM parameter space with a relic density in the preferred range 0.1 < Omega-hsquared < 0.3, the sensitivities to all these parameters are moderate, so an interesting amount of supersymetric dark matter is a natural and robust prediction. Within these domains, the accuracy in measuring the CMSSM and other input parameters at the LHC may enable the relic density to be predicted quite precisely. However, in the coannihilation regions, this might require more information on the supersymetric spectrum than the LHC is able to provide. There are also exceptional domains, such as those where direct-channel pole annihilation dominates, and in the `focus-point' region, where the logarithmic sensitivity to the input parameters is greatly increased, and it would be more difficult to predict Omega-hsquared accurately.Comment: 14 pages, 2 eps figure

    Supersymmetric Relations Among Electromagnetic Dipole Operators

    Full text link
    Supersymmetric contributions to all leptonic electromagnetic dipole operators have essentially identical diagramatic structure. With approximate slepton universality this allows the muon anomalous magnetic moment to be related to the electron electric dipole moment in terms of supersymmetric phases, and to radiative flavor changing lepton decays in terms of small violations of slepton universality. If the current discrepancy between the measured and Standard Model values of the muon anomalous magnetic moment is due to supersymmetry, the current bound on the electron electric dipole moment then implies that the phase of the electric dipole operator is less than 2×1032 \times 10^{-3}. Likewise the current bound on μeγ\mu \to e \gamma decay implies that the fractional selectron-smuon mixing in the left-left mass squared matrix, \delta m_{\smuon \selectron}^2 / m_{\slepton}^2, is less than 10410^{-4}. These relations and constraints are fairly insensitive to details of the superpartner spectrum for moderate to large tanβ\tan \beta.Comment: Latex, 38 pages, 2 figure

    Implications of the Muon Anomalous Magnetic Moment for Supersymmetry

    Get PDF
    We re-examine the bounds on supersymmetric particle masses in light of the E821 data on the muon anomalous magnetic moment. We confirm, extend and supersede previous bounds. In particular we find (at one sigma) no lower limit on tan(beta) or upper limit on the chargino mass implied by the data at present, but at least 4 sparticles must be lighter than 700 to 820 GeV and at least one sparticle must be lighter than 345 to 440 GeV. However, the E821 central value bounds tan(beta) > 4.7 and the lighter chargino mass by 690 GeV. For tan(beta) < 10, the data indicates a high probability for direct discovery of SUSY at Run II or III of the Tevatron.Comment: 20 pages LaTeX, 14 figures; references adde

    Bi-large Neutrino Mixing and Mass of the Lightest Neutrino from Third Generation Dominance in a Democratic Approach

    Full text link
    We show that both small mixing in the quark sector and large mixing in the lepton sector can be obtained from a simple assumption of universality of Yukawa couplings and the right-handed neutrino Majorana mass matrix in leading order. We discuss conditions under which bi-large mixing in the lepton sector is achieved with a minimal amount of fine-tuning requirements for possible models. From knowledge of the solar and atmospheric mixing angles we determine the allowed values of sin \theta_{13}. If embedded into grand unified theories, the third generation Yukawa coupling unification is a generic feature while masses of the first two generations of charged fermions depend on small perturbations. In the neutrino sector, the heavier two neutrinos are model dependent, while the mass of the lightest neutrino in this approach does not depend on perturbations in the leading order. The right-handed neutrino mass scale can be identified with the GUT scale in which case the mass of the lightest neutrino is given as (m_{top}^2/M_{GUT}) sin^2 \theta_{23} sin^2 \theta_{12} in the limit sin \theta_{13} = 0. Discussing symmetries we make a connection with hierarchical models and show that the basis independent characteristic of this scenario is a strong dominance of the third generation right-handed neutrino, M_1, M_2 < 10^{-4} M_3, M_3 = M_{GUT}.Comment: typos correcte

    Bottom-Tau Unification in SUSY SU(5) GUT and Constraints from b to s gamma and Muon g-2

    Full text link
    An analysis is made on bottom-tau Yukawa unification in supersymmetric (SUSY) SU(5) grand unified theory (GUT) in the framework of minimal supergravity, in which the parameter space is restricted by some experimental constraints including Br(b to s gamma) and muon g-2. The bottom-tau unification can be accommodated to the measured branching ratio Br(b to s gamma) if superparticle masses are relatively heavy and higgsino mass parameter \mu is negative. On the other hand, if we take the latest muon g-2 data to require positive SUSY contributions, then wrong-sign threshold corrections at SUSY scale upset the Yukawa unification with more than 20 percent discrepancy. It has to be compensated by superheavy threshold corrections around the GUT scale, which constrains models of flavor in SUSY GUT. A pattern of the superparticle masses preferred by the three requirements is also commented.Comment: 21pages, 6figure

    The anomalous magnetic moment of the muon and radiative lepton decays

    Get PDF
    The leptons are viewed as composite objects, exhibiting anomalous magnetic moments and anomalous flavor-changing transition moments. The decay μeγ\mu \to e \gamma is expected to occur with a branching ratio of the same order as the present experimental limit.Comment: 5 page

    Nearly Bi-Maximal Neutrino Mixing, Muon g-2 Anomaly and Lepton-Flavor-Violating Processes

    Get PDF
    We interpret the newly observed muon g-2 anomaly in the framework of a leptonic Higgs doublet model with nearly degenerate neutrino masses and nearly bi-maximal neutrino mixing. Useful constraints are obtained on the rates of lepton-flavor-violating rare decays τμγ\tau \to \mu \gamma, μeγ\mu \to e \gamma and τeγ\tau \to e \gamma as well as the μ\mu-ee conversion ratio RμeR_{\mu e}. We find that Γ(μeγ)\Gamma (\mu \to e \gamma), Γ(τeγ)\Gamma (\tau \to e \gamma) and RμeR_{\mu e} depend crucially on possible non-zero but samll values of the neutrino mixing matrix element Ve3V_{e3}, and they are also sensitive to the Dirac-type CP-violating phase. In particular, we show that Γ(τμγ)/mτ5\Gamma (\tau \to \mu \gamma)/m^5_\tau, Γ(μeγ)/mμ5\Gamma (\mu \to e \gamma)/m^5_\mu and Γ(τeγ)/mτ5\Gamma (\tau \to e \gamma)/m^5_\tau are approximately in the ratio 1:2Ve32:2Ve321: 2|V_{e3}|^2: 2|V_{e3}|^2 if Ve3|V_{e3}| is much larger than O(102){\cal O}(10^{-2}), and in the ratio 2(Δmatm2)2:(Δmsun2)2:(Δmsun2)22 (\Delta m^2_{\rm atm})^2: (\Delta m^2_{\rm sun})^2:(\Delta m^2_{\rm sun})^2 if Ve3|V_{e3}| is much lower than O(103){\cal O}(10^{-3}), where Δmatm2\Delta m^2_{\rm atm} and Δmsun2\Delta m^2_{\rm sun} are the corresponding mass-squared differences of atmospheric and solar neutrino oscillations.Comment: LaTex 6 pages (2 PS figures). Phys. Rev. D (in printing
    corecore